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_ _MICROSTRIP DISC RESONATQKS

Ingo Wolff and Norbert Knoppik
i
1. Intreduction
;
Resonators are spatial regidns in which standing waves,

bi. e., oscillations, can build uﬁ The simplest form of a
mlcrostrlp resonator can be built up using a conductive section
with a length of 3?%%)[)@5'1_3“.33Q wavelengths along the
conductor) (Figure la), which is either open or short-circuited
‘at the ends. Shorted line resonators are hardly ever used
because it is difficult to manufacture a short circuit in
'strip line techmology. For this reason, microstrip line

resonators are used only in the form of open lines, except in
‘special cases. The disc resonator can be considered as a
degenerate line resonator of very great width. But while only
one standing wavie appears in the z- ‘direction on the narrow line
resonator (Figure la), on the disc resonator (Figure 1b) there
can simultaneously be a standing ﬁévé in the x-direction, if the
width w is of the order of magnitude of one half wavelength
:or a multiple of that. Thus, the field distribution also
:depends on the x<coordinate. The field distribution becomes
ﬁore complex than for the narrow lline resonator. The disc
resonator is often used also in the circular form, as in Figure
lc. The oscillations of this resonator can be interpreted as
standlng radial waves which are reflected at the edge of the

% —Numbers—in-the margin 1nd1cate pagination in the original ——
foreign text.



Figure 1. Plan view of the microstrip disc resonators under
discussion.

resonator and at the center of the disc. In the following, we
shall describe a new theory for calculation of the eigenfrequencies
of individual disc resonators.

2. Calculation of the Eigenfrequencies

By the eigenfrequencies of strip line resonators, we mean
the oscillation frequencies of the resonators without loading
from coupled elements and without the effect of an external
circuit. We must, therefore, solvé the eigenvalue problem
determined by the external geometric form of the resonator and
the boundary conditions thus established for the electromagnetic
fields, and determine the frequency at which this eigenvalue
problem has a solution. The eigenvalue problems defined by the
strip line resonators can be solved exactly only with difficulty.
In the calculations| described here, therefore, we deal with more
or less accurate approxiﬁafiéﬁhcalculations performed using an
idealized resonator model.

2.1 The Circular Disc Resonator

The theory for calculation of disc resonators shall be
explained by means of the circular resonator. So far, only one
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Figure 2. Circular disc resonator,f(a) \ Resonéator model
according to [1], (b) ,1 and a new circular disc
resonator model {(c).

approximation method for calculation of the eigenfrequencies

of a circular dlSC resonator is known from the literature. It

uses a cavity model [1]. Figure 2b shows this model. It is

terminated at the cover areas by Lwo conductive circular discs,

while the generated surface is formed by a magnetic wall. The
|

diameter, of the cover areas-is-equal to the diameter of

¥
the real digc on the substrate material. The height, h, of the
model resonator corresponds to the height of the substrate
material. The dielectric coefficient of the material which fills
the model resonator is If a c¢cylindrical ceordipate syétem is
introduced according to Figure ZbL then we can find a solution
for the electrical field strengthéof the field independent of the
z-coordinate (null-type oscillatibns; only these occur in the
frequency range of interest, due Fo the small substrate height, hi, /102
in the microstrip resonator) in the form .

=g [0 | 1)

a |
Here J, is the cylinder function[of the first type (Bessel
function) and k is the wave number I:ﬁﬁﬂ[@?JﬁT:fTﬂ;Gﬂ;\
the Maxwell equations, we can ca&culate the magnetic-field-
components, from the E, component as
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JY is the derivative of the Bessél function ?1th respect to its
argument, (kr). i

The boundafy conditions at the magnetic wall (x = ro)

require that the tangential magnétic field strength, i. e., the
field component Hg wvanish for all angles % and for the radlus

T = rO. This means that for T =T, the derlvatlve of the Bessel

function, J,{kr) must be set equal to zero. the m-th zero point of
the derivative of the n-th order Bessel function occurs at the
argument -

g ——

L"ﬂ _‘)"'fhl.fﬂj/*-rllcﬂ-" Oﬁum (3)
|

with fp the eigenfrequency of the simple resonator model
according to Figure 2b and g the velocity of light in free
space., For m = 1 we have } '

i

\

B

i —_— JE U

3831 £0Yn=0,

’ 1,841 £oT)n="1,

.““::3£5¥£gx?w=2, Cay -
4,200 foTfn=3. (4) !

|
Thus the EllO mode is the basic éscillational mode of the disc
resonator, followed by the Ezlo[mode, the Ey;q mode, and the

E310 mode. Figure 3 shows the f%eld distribution in the resonator
model according to Figure 2b for !the field types indicated.

{

If the eigenfrequencies calculated from the resonator model
described, fp, or, as is done he%e, the matching eigenvalues

4
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according to Equation (3), are coﬁpared with the measurements
(Figure 4), then deviations betw?én'the‘the@retically calculated
and the measured frequencies appeér. These deviations vary

in magnitude, depending on the mode of oscillation, the

resonator dimensions, and the substrate material. The measured
frequencies are always‘io&éftthanf$he calculated ones. The
deviations are greatest for the e?genfrequencies.qf the EOlO mode,
and can amount to more than 10% for low ro/h ratiosjﬁﬁﬁéj@%f“@

In order to be able to calculate the eigenfrequencies of the
resonators with better accuracy, ia new model resonator is
introduced (Figure 2¢). An effecFive radius, r_ g, which is
always greater than the actual di?c radius, Tos takes . into account
the effect of the eleCtrica% and @agnetic leakage fields at the

edge of the resonator disc, in ca%e the resonator is filled with

3
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Figure 4. Comparlson of the elgepvalues according to Equation
(4) { =———, with the arguments calculated from
measurements accordlng to Equation (3)-. ----- , plotted
versus rgo/h. Substrate materials used:

%) Al,03, h = 0.068 cm; 6. Polyguide, h = 0.078 cm;

‘Al Polyguide, h = 0.156 cm; @ Polyguide,
h = 0.312 cm; <4 RT-Duroid, h = 0.0261 cm;
4 RT-Duroid, h = O. 0531 cm.

air (& =1} ., If the resonator has a substrate material with the
dielectric coefficient & , thenithe added effect of the
leakage field lines, which run'péiﬁiélly in air and partially in
the dielectric, as well as the effect of the inhomogeneous field
distribution in the resonator (see Figure 3) are taken into
consideration by introduction of a "dynamic dielectric coefficient",
oy 1 - /103
.

In order to define the effec£1ve radius, r offr We utilize
an 1882 publication by Kirchoff [2] As was already shown in [37,™~.
Kirchoff's results on calculatlon!of the capacity.of a circular |

disc capacitor can be used as a good approximation if the rétfa“Hg
of the radius to the height is gr'gater than ome (r, /b %1), as
is always true for disc resonators. If it is assumed that the
leakage field of the resonator co%responds to that of the
capacitor, to a first app?b%imatiﬁn (aside from the angular
dependence of the fields), then the effective radius, r_ge, of
the disc resomator can be given aﬁprox1mately as [3]



%umr41+~ﬁ%{m(?T)+lﬁﬁq]uj (5)
|

An equivalent dielectric coekficient Halwas previously
given in [4]; but it can only bel used to calculate the statlc
capa01ty§of a circular disc capacttor on substrate materlal
-£&>jj . t5q takes into con51deratlon the effect of the
leakage field lines running partially in air and partially in
the dielectric. On the other hanﬂ, in the disc resonator we must
also consider the effect of the ihhomogeneous distribution of
the field both under the disc and;in the leakage field region
on the effective dielectric coefficient (see also [5]). This
dielectric coefficient is designated as {fo . It is calculated_
by comparlng the energy content of the electrical field in the
resonator having a eubstrateﬁmateylal ‘with the energy content of
the field in the air-filled I%j%iﬁ resonator. For the energy
content of the principal field re?ion, we can state that

Wa=

=—£—Ga§r- A2h= { g [ JEErgy — Jn—l(g"rﬂ]‘]-n+l(;~ ro)]]J (6)
T ,E -

| 1] for h =0

with 5 t' |

o - pz) for n # 0

From this energy content we can define a dynamic principal field

capacitance, C by arbitrarily introducing a voltage U,

___________ J

U=TElr=ry, 9= 0)h=dkTnlbre) | ‘ (7)

i
at the edge of the disc. 1In thlslcase, the E component of the

o, dyn’

cosine function is selected as the solution for the azimuth angle



dependence. _Using Equations (6) land (7), the dynamic principal .
field capacitance is found to be !

C foh"'?‘p [; Jn-—l( 70) < Jas1 (k7o)
0.dyn =" bfb ._,l L (An“n) :

I

For n = 0, it followg that g&igj?fgﬁffaﬂ ; that is, the

(8)

- V.Aew.—.'\._-,-m.m . ce arm o me he e s

dynamic capacitance is equal to tFe static capacitance of the

circular disc capacitor. Furthermore, we have
t

1

1

Loaya = 035250y s} for n =
.“C,l" ds..n"'-’_- (;‘Tn‘\"—)ii [,/[[] hlh’l’] for n = 2
CIJ ayn = 0 1"}(41 ulat] for n = 3.

If the field distribution of the %esonatof, which depends on the
azimuth angle, ‘71 , 1is also cons&dered for the fringe field

s

capacitance, C;V then we can cor&espondingly calculate a dynamic

1g§§age field capacitance, Ceyud&ni
: I f 1,
Ce,ay T ¥n ‘[C“- st €08% () dp == 5 Ce,.,-ml , (10:\) \
I

e e
!
|
|
;

with ) according to Equation (6).! The dynamic dielectric

coefficient, ‘eayn) , 1s defined frpm the dynamic total capacitance

Cﬂyn == C{) dyn + Ce dyn 7 (].]_)

|
t

by taking the quotient of the dyn%mic total capacitance of the
- z
resonator on carrier material andi the dynamic total capacitance
|
of the resonator with an air filling:
. " Caynle = o)
IR Caynle =0y

(12)



The--dynamic -dielectric coefficieﬁt, tayn , 1s a function of the
geometric dimensions of the resonétor, the dielectric coefficient,
&, and of the mode of oscillatibn under investigation. Consider-
ing the effective radius, r_g¢, according to Equation (5) and the
dynamic dielectric coefficient, ?%ﬁ, we can calculate the
eigenfrequencies, fo’ of the resonator from the relation ﬂsee
Equation (35£

'
f
I
'
'

(13)

S 27fo ren) Edynfcq = dam
.
with %m for m = 1 according to Equation (4).

As it is well known (e. g., [6]) that the electromagnetic
field concentrates in the region pf the dielectric with rising,
frequency in the presence of a dielectric~air boundary, and
because a corresponding effect must also occur with the microstrip
disc, the dynamic dielectric coefficient, ¢id , is also considered
to be frequency-dependent. As was found empirically, the dynamic
dielectric coefficient, *“&n , depends linearly on the frequency.
The proportiomnality factor depend% on the diameter of the disc
and on the dielectric coefficient) i (see also [7]).

Figure > shows the dynamic dielectric coefficient of the
circular disc resonator calculatep as a function of ro/h for
i« = 10.4 and for a height, h ;= 0.068 cm, of substrate
material. Different magnitudes of dynamic dielectric coefficients
appear for the various modes of oécillation. In particular,
the dynamlc dielectric coeff1c1ent for the EOlo mode of
oscillation is considerably greater than that for the other field
modes. With diminishing values oF ro/h, .dﬂl first becomes
monotonically smaller, For very %mall values of r_, the eigen-)
frequencies of the resonators becbme very large, Thls,w_conSLderlng
the frequency-dependence of the dynamlc dielectric coefficient,
leads to a renewed increase of fﬂ?ﬁ

s
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Figure 5. Calculated dynamic dielectric coefficient for the
circular disc resonator as a function of ro/h for
various types of oscillation (A1203 material);
| = 10.4, h = 0.068 cm.

i
| U
The percentage deviation,, éﬂ%‘of the eigenfrEquenciesifo and fo.

according to the two resonator models (Figure 2b and 2¢),
df = fa — (n] referred to £, is plotted in Figure 6. The

deviations are considerable, esp?cially for the E010 mode. For
small values of rofk(roh~10) they ake of the magnitude of 8%. The
deviation 4/ is always negative fbr the resonators under consider-
ation. That is, the eigenfrequehcies of the resonator models
according to Figure 2¢ are sm@llei than those of the resonator
model accobrding to Figure 2b. |
If the measured resonance erquencies of resonators on

different substrate materials (xﬁd;é;:IOEYP&EQﬁ@;B?fﬁﬁﬁiiﬁﬁﬁﬂ
=223 ) having different heights, h, are compared with the
eigenfrequencies calculated from Equation (13), a maximum deviation
of 1% is found. As Figure 7 show%, this applies over the whole

.region of ro/h ratios investigate§ from rO/h = 4 to ro/h = 120.
I

10



Figure 6. Calculated deviation o% the eigenfrequency fR
according to Equation (3) from the
eigenfrequency f£_ according to Equation (13):
Aj=fo—1Im referred to i f  for various types of
oscillation in a circular disc resonator on A1203
material; ‘«[= 10.4, h = 0.068 cm.
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Figure 7. Comparison of the eigenvalues for the eigenfrequencies
f, according to Equati?n (13) with measurements. See

Figure 4 for substrate|materials.
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Figure 8. Rectangular sheet resonators: (a) line resonator
type, (b) sheet resonator type, with a schematic
resentationd of the field for one line rFesonance; I
g EMJ typeﬂand one sheet resonance; (d)(fwlhpli
- ( o
|
2.2 The Rectangular Sheet ResonaFor
|
In order to calculate the eigenfrequencies of the rectangular
sheet resonator. (Figure la and 1bD we must differentiate between
line resonances and sheet resonances While the line resonances
have a field dependence on only ope coordinate (e. g., on the
coordinate 2z, Figure 8a), the sheet resonances are defined so
_that their fields always depend o# two coordinates (x and =z,
" Figure 1 and Figure 8). Both of these groups of oscillation modes

_are treated in the following.

12
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Figure 9. Rectaﬁgular sheet resohator (a); simple cavity model
(b); and a new cavity} model (c).

2.2.1 The sheet resonances,

We can state:ia simple theory for calculating the eigen-

frequencies of the sheet resonancés using a cavity model, as for
the circular disc resonators. This first model, again, is built
up so that the electromagnetic”ffgfa'appears only under the sheet.
That is, the leakage field of the, sheet resonator at the edges of
the sheet is neglected; the resoPator iéfte;minated at the sides
by an electrical open circuit (a magnetic wall) (Figure 9b).

As no tangential magnetic field strength can exist in the magnetic
wall, and because only the oscillation modes independent of the
height coordinate (E¥ modes, see;coordinate system in Figures

1 and 8) can be excited in the resonator for a very small height,
h, of the substrgte material, th% eigenfrequencies of this

resonator model can be calculated| by the relation’

e e ——— e

N G e
=i V(‘us) (7)o (14) /105
- . i e - -

Due to the fact that the entire'l%akage field of the resonator

is neglected in the derivation oflEquation (14), it is generally
relatively inaccurate (see also t%e discussion at the end of this
section). ;

13



Figure 10,

Figure 11.
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Static principal field capacities (C,) and fringing
field capacities for one edge with the length 1
(Cel) or with the length w (Céz)%for a rectangular

microstrip sheet capacitor; parameter, dielectric
coefficient, % ; 1 =10 cm, h = 0.05 cm.

t
On the calculation of} Vorf and leff'

b
1
'



L In order to discuss the effect of the leakage fleld at the
lateral edges, we first show in Flgure 10 the static leakage
capacitances Cqq at the sides oflthe length l,and G, at the
sides of the length w for a reetangular sheet capacitor, as
compared to the static capac1tance 'C, of the sheet capacitor
without the leakage field. As can be found from the theory of
the rectangular sheet capacitor Ksee Equation (6) from [4]),
the effect of the leakage capacit%nces can be understood in
analogy with the discussions for the circular disc capacitor,
in that the total capacitance is”?elculated as for the capacitarnce
of an ideal plate capacitor with equivalent width and equivalent
length, filled with a material having the dielectric coefficient
teaa | |

As for the circular disc capa01tor,1an approprlate model is
also selected to calculate the e1genfrequenc1es of the rectangular
resonator. The model resonator has the dimensions 1 off and Weff’
the height h and a dielectric coefflclenr m;](Flgure 9c).

It ‘is terminated by conductive su;faces at the cover planes and

by magnetic walls at the side surfaces. The effective edge lengths
are first calculated separately, |as for the effective width of

an air-filled microstrip line [8]. 1In addition, an edge correction
is made so that the sheet area A of the rectangular model

resonator (A = LA eff) is 1dent1cal with the area obtained
by increasing the actual edges (edge lengths 1 and w) by the
lengths &) and omlfor the leakage}fleld region accordlng to [8]

(heav1ly bordered area in Figure ll)
|
As for the circular disc resbnator, a dynamic dielectric
coefficient is also defined for the rectangular sheet resonator.
"It describes both the effect of the leakage field in the air and
"dielectric reglons and the 1nf1uence of the 1nhomogeneous field
'distribution on the effective dlelectrlc coefficient. If it is

-assumed that the electric field sprength of the principal field

15



region under the sheet is descriﬁed by -

e o

R
and that this region is fllled wfth a dielectric having the

dielectric coefficient sﬂ s theo for the energy content of the
electrical field in this region we get

= Hﬂ
(16)

with igpe=

L
P-h
Q
H
g
~
o

Again, a voltage U is arbltrarllyudeflned as the product of Ey
and h at the location x =0 and z = 0;

i

T=Byz=0,:=0h=4]] (17)

and the dynamic pr1n01pal field capac1tance, CO dyn’ is calculated

with it: :
.. D

2 Wa Za erlw CQ stat

Gam= g =" hys T 0

(18)

For a homogeneous field dlstrlbutlon of the electrlcal field
strength, m = 0 and n = 0, so that TR = and’ o, dyn =
CO stat’ By averagung over the co81ne formed field dlstrlbutlon
we obtain the dynamlc leakage field capacitance at the edges as:

Cor,stnt | 1
‘Oel,dyn = *“ﬂi sl fﬂosz (“:n;t ) dz= Cel ptat" 5 3

—

i : sz atat - iian . 1 -
Cez,oyn = = cos2 [ | dx = Cez,stat"~»

i w - ]’J
I . ' B

]



Now ;ifui..is. calculated accordingito Equation (12) .from the
dynamic total capacitance: !

f (20)

"‘léﬂ;n = ciﬁ:.dyn '?‘:3 (-"01 W yn'“{’ 2 Ce'.!. dynf™
Cdyn T yn S S e
!
!
! .
The eigenfrequency of the '/hu| mode of the rectangular
Jomon
sheet resonator.iis calculated fr?m

D

AR w

using the cavity model defined aecording to Pigure 9c.

Figure 12 shows how the eigénfrequencies calculated according
to Equation (21) differ from theleigenfrequenc1es calculated accord-
ing to Equatlon (14) for the ”Imm mode. In this case, f—fn—fd .
The deviation: AH of the elgenfrequenc1es of the model accordlng
to Figure 9c and Figuré 9b is always negative for e =231 =~
-{material Polyguide, Figure 12a). ~Thablis, -the eigenfrequency
of the newly introduced model accordlng to Figure 9c is always
lower than that of the 31mple resonator model according to Figure
9b. If, on the other hand, the\dlfference 4f} is plotted for a
material with greater dlelectrlc coefflclent (Al 37 e =104
Figure 12b), then 4/] first becomes negative for small values of
w (at constant value of 1). Thdt is, the e1genfrequenc1es
calculated from Equation (21) are lower than those from Equation
(14). TFor a certain ratio of wA , Il becomes equal to zero.
For larger ratios of w/l, Jj beclomes positive. That is, £y is}
greater than fp. According to %quation (21), £, is imversely
:proportional to (s and, furthermore, independent of w.gg and
1

Feff -

For low ratios of w/l, the dielectric coefficient ol
becomes much smaller than ;%dﬂ(at{constant length, 1); but it

always passes through a limited r?nge of values. In contrast,

17



Figure 12,

18

Calculated deviation of the eigenfrequency f
according to Equation (14) from the
eigenfrequency f accordlng to Equation (21)

A== h referred to £ for the ¥l type of a
rectangular sheet resonafor. Parameter: resonance
length 1 (a) on Polyguide material (=} = 2.315,
h =0.156 cmg (b) on A1203 material (%] = 10.4,
h = 0.068 cm). -



the .root .expression for »-¥0] apéroaches infinity in Equation (14),
while the root expression in Equation (21) at this boundary
transition is always very much sqaller'than that from Equation (14),
because w off is very much greater than w_for small values of w.
It follows from thls that there 15 a very .large deviation, dﬂ
'always negative, for small values of w. For large values of w,
in contrast, - Woff is approximately equal to  w, so that effect --
of the dielectric coefficient Ffum (sayn<e) on the eigenfrequencies
prevails and foacan become largeﬁ than f,. This is particularly
the case for large values of &), because in this case the
relative deviation of ] from {Q becomes large. For the
measurements, see Section 2.2.3;

2.2.2 The line resonances

1

As mentioned previously, tﬁose oscillation modes with fields
which depend only on one coordin%te, X or z, (Figute 8 a, c¢)
are de51gnated as line resonancea. ‘These oscillation modes are’
designated as ‘mm[ or £y modea Their field distributions
correspond to those of the quasi-TEM modes on the mlcrostrlp lines.
Resonators in which these types are excited can be treated in
a first approximation, as open-ended line resomators, the eigen-
frequencies of which are derived Erom the condition that the
line length, 1 ( E%4) modes) or the line width, w ( Emm3 modes )
is a multiple of the half-wave 1eﬁgth.

4

¢ g
Y OT ) frmme

e T | @

fu=n

where %F1 is the effective real statlc dielectric cocefficient

according to Wheeler [8] or Schnelder [9] for- a7m1crostr1p line
of width w or 1, respectlvelyﬂ
I

her the effect of the leakage

!

field at the end of the line, no; the frequency dependence of the
!

" 'Equation (22) does not consi

19



effective dielectric coefﬁicienti In order to learn.the effect
of the leakage field, the leaka%e capacitances Cyop and G, at
the ends of the lines were calculated by the method described
in [4] (e. g., for the Ef,| mode the leakage capacitance C_,):

o= (e = 5w (23)

|

Here 2 is the phase velocity and ZD2 the_characteristic

impedance for aM@icrostrip line with the width 1 on a carrier
material with the dielectric coeﬁficient Tl .
P

The end capacitances, Ce2’ are recalculated in short open-
ended line segments having the characteristic impedance of the
line to which they are connected. . These line segments always have
the length 4ff . This length can Be calculated from thé character-
istic impedance of the mlcrostrlp line of width w [8]

e

Zpy = ]/.ﬂﬂ b
“ _’f 1/{“pf[{"}}u}uq

(24)

and from the end capacitances Ceb according to Equation (23):

P — (Earr{l”nq — e ﬁ (25)

- 2y ‘i den(”’) 7

A corresponding relation can be derived for w(Ei. modes)by
exchanging w and 1 in Equatiop (25). In Equation (24) and
Equatlon“(ZS), Jacee(w)  and &nUﬂ ére the static dielectric
coeff1c1ents for the lines of correspondlng width.  zamiv) is the
dynamic dielectric coefficient already defined in Section 2.2.1,
considering the leakage capacitan%e, Cel’ at the edges of the res-
onator with the length 1 (Ce2 = 0). wd is the effective strip
conductor width according to Wheeler [8]. With this assumption,
.‘@EEQQ] is equal to the static effectlve dielectric coefficient - )
et for the frequency f = 0 [8] For frequencies greéﬁgfi}haﬁt
'zero, eayn | also considers the freguency-dependent properties of :

20



the microstrip line. If Fhﬁ'is ﬁeplaced in Equation (25) by
the value et®)], we can use it in order to calculate in a
simple manner the effect of the ﬂeakage field at the ends of
the line resonator, as an approﬁlmatlon

e e e s et e = ¢ m e e

l
!
The eigenfrequencies of the line resonances are calculated

|
as |
o :
I for -E;‘ modes
2 L) eayn(w) BE
S ol otk L
i
and ; (26)
PR E ‘for Ei modes
= W o wi
fo - 7“’1&1):}([) | —00

|
Here L and W are the effectivie active lengths of the
resonators for the line resonances:

s cmon | mmmme

W= w-%—’.dw :——lq'r-}é!lﬁ' (27)

. The change in length . 241 aécording to Equation (25) is
plotted in Figure 13 for line resbnators of different lengths on
Polyguide material. For large line widths w Wil > 03 and large
line lengths 1 (>Zewy, A0 4an2@s a first approximationgbe
considered independent of w/1, while 4l changes strongly for
small valueSHof w/l. Figure 14 @hows the percentage relative
deviation of the eigenfrequency fo [Equation (26)], from the
eigenfrequency fy TEquation: (Zf)“ This deviation is smaller
than zero for all values of . ' That is, the frequency £,

is always below f;. As can be sFen from Figure 14, the error
in the calculation of the elgenfrequencles is some 10%, especially"
For short(rcsonators )
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Figure 13. Change in length - u”} + for a line resonator with
consideration of the scattered fields at the ends
of the resonator, versus) w/l; parameter, resonator
length 1; ‘#od type, #'= 2.315, h = 0.156 cm.

g
i

Gom |

04 05 - ag 0
Wl

Figure 14, Calculated deviation Ef the‘elgenfrequen01es £
according to Equatlon (22) and fo according to
Equation (26): zﬂ~Jo*fﬁ referred ~ to f£_ for the
Eygl line type of a rectangular sheet resonator on
Polyguide material; parameter, resonator length 1;
&= 2,315, h = 0. 156 cm.
l
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Figure 15. Calculated deviation of the eigenfrequency fp
according to Equatlon (14) and £, according

to Equation (26): W= =i referred to £, for the

Fiol line type of a rectangular sheet resonator on
Polyguide material; parameter, resonator length, 1;
= 2,315, h = 0.156 cm.

1
'

ﬁ'““'In Figure 15, the e1genfrequenc1es fO according to
Equation (26) are compared with the eigenfrequencies fp accord-
ing to Equation (14) for m = 0. 'In contrast to Figure 12Zb, the
deviation. “ (7 =fy=—/u) becomes pos?tive for low values of w/1

(at constant value of 1) and negative for large values of w/l.
The reasonifor this is that the eigeﬁfrequency fg, according to
Equation (14)113 independent of w for m = 0. The eigen-
frequencyhffo} from Equation (26)L however, becomes larger for .
diminishing values of w, as in thlS case both L and Fuiy
become smaller. The value of - 1ﬂbecomes zero for conductoq widths

'w, at which the relation'f$ee Equgtlon (14) and Equation (26)]\

N |

Verz “T/!;‘,f,f f,—J (28)
;is_ﬁplﬁillgdir‘?his means that in!
;'of Figure 9b gives a good approximation for the eigenfrequencies
llof the line resonator. !

this case the simple qayity_quel;
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- 2.2.3.._Measurements E
1

Figure 16 shows a comparison between the measured resonance
. | . .
frequencies, £, and the calculated eigenfrequencies of sheet

cand line resonators on various substrate materials. The
. . { .
"eigenvalues" assigned to the measured frequencies, f

1

ID.:
| P =2 Vot el o k= n j
or P =2fmVeoeagn(l)so W =m

R

(29)

t

!
are plotted for the line resonances, and

2wl eveaynuo

L P=

— =M

V (1) i (H (30)

t
for the sheet resonances. This representation makes possible
a comparison of the measured and calculated frequencies of
resonators with different dimensions on different substrate
materials in a single diagram. As follows from Equations (29)
and (30), 'the eigenvalues for the line resonances with m =n
and the eigenvalues of the sheet resonances with the same value
of mn do not differ in Figure 16. The deviations of the
measured resonance frequencies of the line resonances from the
values calculated according to Eduation (26) are clearly less
than 1%. On the other hand, thﬂ‘deviations of the measured and
calculated sheet resonance frequencies are in the order of
magnitude of 1% to 2%. As extensﬁve techmological investigations
show, these deviations are due t@ the fact that the sheet
resonances are in part difficult ‘to excite and for that reason
! the resonators must be more closeﬁy coupled to the external

!

' measuring system. |
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Figﬁie 16,
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Comparison of the "elgenvalues", p, assigned to the
measured frequencies i [Equations (29) and (30)lwith
the eigenvalues determined from Equation (21) (sheet
resonances) or from Equation (26) (line resonances),
plotted versus w/l. |Measured points: ' 4 line type
(LT), &, disc type (ST) on Polyguide, h = 0.156 cm;

+ LT, x ST on RI-Duroid, h = 0.0261 cm; o) LT,

% ST on RI-Duroid, h = 0,0531 cm; &) LIy~<s| ST
on A1203, h = 0, 068 cm. The measurements are plotted

for resonatoers of dtfferent lengths (frequency range
1 GHz to 12 GHz). :
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3. Conclusions
|

A method for calculating the!eigenfrequencies of circular

and rectangular microstrip dlSC]resonatngﬁ}gwggscrlbed Line
resonators are treated as a spec1@1 case of the rectangular sheet
resonator. A model resonator with effective edge lengths, filled
with a material having the dynamlc dielectric coefficient fmn}\
takes into consideration both the| effect of the leakage field on
the effective dimensipns and the jinfluence of the leakage field
and the inhomogeneous field distribution of the leakage field and
principal field on the effective %ctive dielectric coefficient.
The method makes it possible to-c?lculate the eigenfrequencies of
the resonators with considerable more accuracy than was previously
possiblyl. f |

t

}
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